IKKα and alternative NF-κB regulate PGC-1β to promote oxidative muscle metabolism
نویسندگان
چکیده
Although the physiological basis of canonical or classical IκB kinase β (IKKβ)-nuclear factor κB (NF-κB) signaling pathway is well established, how alternative NF-κB signaling functions beyond its role in lymphoid development remains unclear. In particular, alternative NF-κB signaling has been linked with cellular metabolism, but this relationship is poorly understood. In this study, we show that mice deleted for the alternative NF-κB components IKKα or RelB have reduced mitochondrial content and function. Conversely, expressing alternative, but not classical, NF-κB pathway components in skeletal muscle stimulates mitochondrial biogenesis and specifies slow twitch fibers, suggesting that oxidative metabolism in muscle is selectively controlled by the alternative pathway. The alternative NF-κB pathway mediates this specificity by direct transcriptional activation of the mitochondrial regulator PPAR-γ coactivator 1β (PGC-1β) but not PGC-1α. Regulation of PGC-1β by IKKα/RelB also is mammalian target of rapamycin (mTOR) dependent, highlighting a cross talk between mTOR and NF-κB in muscle metabolism. Together, these data provide insight on PGC-1β regulation during skeletal myogenesis and reveal a unique function of alternative NF-κB signaling in promoting an oxidative metabolic phenotype.
منابع مشابه
Activation of alternative NF-κB signaling during recovery of disuse-induced loss of muscle oxidative phenotype.
Physical inactivity-induced loss of skeletal muscle oxidative phenotype (OXPHEN), often observed in chronic disease, adversely affects physical functioning and quality of life. Potential therapeutic targets remain to be identified, since the molecular mechanisms involved in reloading-induced recovery of muscle OXPHEN remain incompletely understood. We hypothesized a role for alternative NF-κB, ...
متن کاملDown-regulating peroxisome proliferator-activated receptor-gamma coactivator-1beta alleviates the proinflammatory effect of rheumatoid arthritis fibroblast-like synoviocytes through inhibiting extracellular signal-regulated kinase, p38 and nuclear factor-kappaB activation
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease leading to joint destruction and disability. Peroxisome proliferator-activated receptor-gamma coactivator-1 beta (PGC-1β) is a transcriptional coactivator that plays important roles in regulating multiple aspects of energy metabolism and cytokine signaling pathways. PGC-1β overexpression leads to the attenuation of macroph...
متن کاملResearch Article DMA in Drinking Water Activated NF-κB Signal Pathway and Increased TGF-β and IL-1β Expressions in Bladder Epithelial Cells of Rats
Dimethylarsinic acid (DMAV) is the main product of arsenic methylation metabolism in vivo and is rat bladder carcinogen and tumor promoting agent. In this study, we measured the expressions of mRNA and proteins of NF-κB pathway members, IKKα, IKKβ, p65, and p50 in rat bladder epithelium by qRT-PCR and immunohistochemical analysis after rats received drinking water containing 100 and 200 ppm DMA...
متن کاملPathophysiology of osteoarthritis: canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation.
Osteoarthritis (OA), a whole-joint disease driven by abnormal biomechanics and attendant cell-derived and tissue-derived factors, is a rheumatic disease with the highest prevalence, representing a severe health burden with a tremendous economic impact. Members of the nuclear factor κB (NF-κB) family orchestrate mechanical, inflammatory and oxidative stress-activated processes, thus representing...
متن کاملThe transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles
The transcriptional coregulators PGC-1α and PGC-1β modulate the expression of numerous partially overlapping genes involved in mitochondrial biogenesis and energetic metabolism. The physiological role of PGC-1β is poorly understood in skeletal muscle, a tissue of high mitochondrial content to produce ATP levels required for sustained contractions. Here we determine the physiological role of PGC...
متن کامل